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Abstract: Surface-enhanced  Raman  spectroscopy  (SERS)  based  on  two-dimensional  (2D)  materials  has  attracted  great  atten-
tion over the past decade. Compared with metallic materials,  which enhance Raman signals via the surface plasmon effect,  2D
materials integrated on silicon substrates are ideal for use in the fabrication of plasmon-free SERS chips, with the advantages of
outstanding fluorescence quenching capability, excellent biomolecular compatibility, tunable Fermi levels, and potentially low-
cost material  preparation.  Moreover,  recent studies have shown that the limits of  detection of 2D-material-based SERS may be
comparable  with  those  of  metallic  substrates,  which  has  aroused  significant  research  interest.  In  this  review,  we  comprehens-
ively summarize the advances in SERS chips based on 2D materials.  As several excellent reviews of graphene-enhanced Raman
spectroscopy have been published in the past decade, here, we focus only on 2D materials beyond graphene, i.e., transition met-
al  dichalcogenides,  black  phosphorus,  hexagonal  boron  nitride,  2D  titanium  carbide  or  nitride,  and  their  heterostructures.  We
hope that this paper can serve as a useful reference for researchers specializing in 2D materials, spectroscopy, and diverse applic-
ations related to chemical and biological sensing.
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1.  Introduction

Since it  was originally  discovered in  the 1970s[1],  surface-
enhanced  Raman  spectroscopy  (SERS),  a  technique  with  an
enormous  enhancement  factor  of  108 or  even  higher  in  Ra-
man  signals  after  adsorbing  molecules  on  certain  surfaces,
has  been  widely  studied[2],  and  increasingly  used  to  develop
highly  sensitive  molecular  analytical  tools[3].  It  is  now  widely
accepted  that  Raman  enhancement  phenomena  are  attrib-
uted  to  two  mechanisms:  the  electromagnetic  mechanisms
(EMs), and chemical mechanisms (CMs). With regard to EMs, Ra-
man  enhancement  mainly  originates  from  the  local  field  en-
hancement  around  the  surfaces  of  rough  or  nanostructured
noble metals (e.g., gold and silver), induced by the surface plas-
mon effect[4]. CMs usually occur due to the charge transfer ef-
fect between molecules and substrates[5].  In comparison with
EMs,  enhancement factors  in CMs are typically  moderate and
material-dependent[6]. Due to a significant enhancement in Ra-
man  signals,  SERS  chips  have  enabled  significant  develop-
ments  in  chemical  and  biological  sensing  applications  for
trace gas monitoring[7], single-molecule analysis[8], disease dia-
gnosis[9−11], and pesticide residue detection[12, 13].

Two-dimensional  (2D)  materials  provide  us  with  emer-

ging  opportunities  in  SERS,  since  the  discovery  of  graphene
in 2004[14]. By virtue of advantages such as outstanding fluores-
cence quenching capability, excellent biomolecular compatibil-
ity, tunable Fermi levels, and potentially low-cost material pre-
paration,  2D  materials  could  potentially  be  considered  as
ideal  metal-free  SERS  materials.  However,  such  materials  en-
hance Raman signals  via  CMs,  and usually  suffer  from limited
Raman enhancement factors (EFs) (typically below 103), as com-
pared  with  metallic  materials[15].  In  recent  studies,  research-
ers  have  found  that  this  problem  may  be  solved  by  utilizing
2D heterostructure materials[16] or by doping 2D materials via
chemical  methods[17].  Consequently,  2D-material  SERS  chips
have  attracted  significant  research  attention  in  the  past  few
years.  Having first explored graphene-enhanced Raman spec-
troscopy (GERS),  researchers have devoted much attention to
studies  of  SERS  based  on  other  2D  materials  and  their  hy-
brids,  such  as  transition  metal  dichalcogenides  (TMDs),  black
phosphorus (BP), hexagonal boron nitride (h-BN), and 2D titani-
um  carbide  or  nitride  (MXenes).  By  integrating  these  materi-
als  on  silicon-based  chips,  SERS  detection  devices  could  be
made widely accessible,  meeting the requirements of  diverse
analytic scenarios.

In  this  review,  we  comprehensively  summarize  novel
SERS  techniques  based  on  metal-free  2D  materials  beyond
graphene,  including  TMDs,  BP,  h-BN,  and  MXenes.  Firstly,  we
briefly introduce 2D materials’ physicochemical properties, be-
fore  categorizing  the  cutting-edge  progress  of  SERS  studies
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based  on  these  substrates.  Due  to  this  paper’s  length  limit,
SERS  studies  of  metal-2D-material  hybrid  substrates  are  not
included  here.  Finally,  we  summarize  the  review,  and  discuss
prospects in this area. We hope this review will serve as a use-
ful reference for researchers in the fields of 2D materials, spec-
troscopy,  and  their  applications  in  chemical  and  biological
sensing.

2.  Mechanisms of SERS

ISERS

It  is  generally  believed  that  the  Raman  enhancement  in
SERS  originates  primarily  from  two  mechanisms:  EMs  and
CMs. With respect to EMs, the Raman enhancement usually oc-
curs  around  surface  locations  in  noble  metal  nanoparticles,
known  as  “hot  spots”[18].  When  the  incident  light  is  in  reson-
ance with the nanoparticle’s localized surface plasmon reson-
ance (LSPR)  frequency,  the incident  light  excites  electrons on
the  metal  nanoparticle’s  surface,  leading  to  a  polarization  of
charge and oscillating dipoles, as shown in Fig. 1(a). Since the
frequencies  of  Raman  scattered  Stokes  (or  anti-Stokes)  fields
are typically  close to that  of  the incident light,  the resonance
results  in  an  intensity  enhancement  of  both  incident  light
and  Raman  scattering  light.  Consequently,  overall  enhanced
Raman signal intensity ( ) can be expressed as[19]: 

ISERS = ∣Ein∣∣Es∣ ≈ ∣Ein∣, (1)

Ein Eswhere  and  are  magnitudes  of  electric  fields  of  incident
light  and  Raman  scattering  light,  respectively.  It  can  there-
fore  be  understood  that  Raman  enhancement  factors  due  to
EMs are equal to the fourth power of the electric field enhance-
ment  value  at  the  incident  light  frequency.  Although  EMs
may  result  in  an  extremely  high  Raman  enhancement  factor

(up to 109, or even higher)[20, 21], the enhancement typically suf-
fers  from  a  photothermal  heat-generation  effect,  leading  to
an  obvious  temperature  rise  (up  to  or  over  one  hundred  de-
grees)[22],  that may be harmful in relation to biomolecular de-
tection.  Moreover,  the  nanoparticle  LSPR  is  generally  a  func-
tion  of  the  incident  light  frequency,  particle  size,  shape,  and
surrounding medium[23].  Consequently, metallic structures re-
quire careful design in order to achieve appreciable enhance-
ment factors.

On  the  other  hand,  CMs  are  often  attributed  to  the
charge  transfer  effect,  which  is  not  yet  clearly  understo-
od[24−26]. Compared with EMs, CMs originate from short-range
effects  arising  from  the  strong  electronic  coupling  interac-
tion  between  substrates  and  molecules,  as  shown  in
Fig. 1(b). Taking graphene-based SERS as an example[25], this in-
teraction  transfers  electrons  from  the  Fermi  level  of  the  sub-
strate  to  the  lowest  unoccupied  molecular  orbital  (LOMO)  in
a  molecule,  thereby  forming  a  charge  transfer  intermediate,
whose  Raman  scattering  cross-section  is  much  higher  than
that of the unabsorbed molecule, which is similar to the reson-
ant Raman scattering[26]. Moreover, the charge-transfer reson-
ance between 2D semiconductor materials and molecules, as-
sociated with the photon-induced charge transfer from semi-
conductor  band  edges  to  the  affinity  levels  of  molecules,  is
considered to contribute to changes in molecular  polarizabil-
ity  in  relation  to  SERS[27].  In  practical  metallic  SERS  applica-
tions,  both  EMs  and  CMs  usually  co-occur  on  metal  surfaces,
while chemical enhancement factors are usually moderate (typ-
ically  below  103)  compared  with  those  of  EMs[28],  but  do  not
suffer  from  the  disadvantage  of  photothermal  heat  genera-
tion.  It  is  worthwhile  to  note  that  some  studies  show  that
chemical  enhancement  factors  could  be  significantly  im-
proved  using  dielectrics[29],  semiconductors[30],  or  2D  materi-
als[31],  offering  us  an  unprecedented  opportunity  to  develop
and revolutionize plasmon-free SESR substrates.

3.  SERS based on 2D materials beyond graphene

In this section, we summarize SERS advances based on di-
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Fig. 1. (Color online) Schematics of the mechanisms of SERS. (a) With re-
spect to EMs, when the incident laser is  in resonance with the nano-
particle LSPR frequency, the incident laser excites electrons on the met-
al surface, leading to a polarization of charge and oscillating dipoles.
As the frequencies of Raman scattering light are close to that of the in-
cident laser,  the resonance also increases the intensity of  the Raman
scattering light. (b) For CMs, electrons are transferred from the Fermi
level of the substrate to the LUMO of the molecule, thereby forming a
charge transfer intermediate. The energy transition ( ) between the
Fermi  level  of  the  substrate  and  LUMO  is  much  stronger  than  that
( )  between  the  highest  occupied  molecular  orbit  (HOMO)  and
LUMO, resulting in a higher Raman scattering cross-section.
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Fig.  2.  (Color  online)  Comparison  of  various  2D  materials  beyond
graphene  for  SERS  applications,  including  TMDs,  BP,  h-BN,  MXenes,
and their heterostructures.
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verse  2D materials  beyond graphene,  as  shown in Fig.  2.  The
section  is  divided  into  five  parts,  covering  the  development
of  SERS  chips  based  on  TMDs,  h-BNs,  BP,  MXenes,  and  their
heterostructures,  respectively.  In  each part,  we first  briefly  in-
troduce  the  physiochemical  properties  of  2D  materials  for
use  in  developing  SERS,  then  discuss  state-of-the-art  experi-
mental results.

3.1.  SERS based on TMDs

TMDs, consisting of covalently bonded X–M–X atoms (M =
transition metals  of  groups IV–VI;  X  = chalcogen),  where M is
a transition metal atom (e.g.,  Mo or W),  and X is a chalcogen-
ide  atom  (e.g.,  S,  Te  or  Se),  have  a  series  of  superior  proper-
ties,  ideal  for  potential  use  in  SERS  chips[32−37].  Firstly,  as  the
density  of  states  (DOSs)  near  the  Femi  level  plays  an  import-
ant  role  in  changing  the  electron  transition  probability,  TM-
Ds  show  superior  enhancement  capability  as  compared  to
that of graphene[38].  Secondly,  in their  thermodynamically 2H
phase, MoS2, MoSe2, WS2, and WeSe2 are semiconductors[39], fa-
cilitating  the  photoinduced  charge  transfer  (PICT)  effect
between  substrates  and  absorbed  molecules.  It  is  helpful  to
increase  molecular  Raman  scattering  cross-sections.  Finally,
TMDs usually have three-layered atomic structures, thereby of-
fering abundant surface sites for chemisorption, with high os-
cillator strengths in the exciton bands, together with exciton-

ic resonance[19], with the potential to boost Raman signals.

. × 

Given these excellent properties, TMDs have been extens-
ively  studied  for  use  in  SERS  chips[40−49].  In  2016,  Mueh-
lethaler et al.[50] first observed an EF of  for organic mo-
lecule  (4-mercaptopyridine)  sensing,  based  on  a  monolayer
MoS2 substrate, as shown in Fig. 3(a).  This ultrahigh enhance-
ment  factor  is  attributed  to  the  fact  that  the  laser  excitation
wavelength (488 nm) was in resonance with the charge-trans-
fer transitions at a wavelength of 467 nm, and close to the shif-
ted  C-exciton  resonant  wavelengths  (360–390  nm).  The  ex-
citon induced via laser excitation has an extremely high oscil-
lator  strength,  and  therefore  contributes  to  the  enhance-
ment via  “intensity  borrowing”.  Moreover,  since surface func-
tionalization and defect  engineering lead to a  strong interac-
tion between TMDs and adsorbed molecules, they provide an
effective approach to improving charge-transfer efficiency for
SERS[51, 52]. For example, Zheng et al.[53] demonstrated that oxy-
gen  incorporation  contributes  to  the  improvement  of  the
SERS  performance  for  non-metal-oxide  semiconductors.  The
oxygen-incorporated  MoS2 substrate  exhibits  a  remarkable
SERS  sensitivity,  with  an  EF  of  up  to  105,  as  compared  with
the  oxygen-unincorporated  sample.  In  this  work,  the  Raman
enhancement  effect  of  the  oxygen-incorporation  and  oxy-
gen-extraction  MoS2 substrates  can  be  attributed  to  two
factors.  One  factor  is  that  additional  energy  levels  enhance
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the  possibility  of  charge  transfer  between  the  MoS2 sub-
strate  and  molecules  that  are  in  resonance  with  the  incident
photons.  The  second  contribution  arises  from  the  improve-
ment of the exciton resonance, as shown in Fig. 3(b). Interest-
ingly,  as  the  oxidation  process  of  TMDs  affects  SERS,  Hou et
al.[54] used SERS to monitor  the oxidation and degradation of
MoS2,  which  directly  guides  stability  prediction  in  TMDs-
based  devices,  and  monitors  the  quality  of  TMDs.  Moreover,
as the structural transition of crystals leads to a change in the
electronic  structures  of  TMDs,  TMDs  phase  engineering  has
also  attracted  a  great  deal  of  attention  in  relation  to  the  en-
hancement of Raman signals[55, 56]. Based on the phase engin-
eering  method,  Yin et  al.[57] theoretically  and  experimentally
studied  the  Raman  enhancement  effects  of  R6G,  crystal  viol-
et (CV), and copper phthalocyanine (CuPc) molecules on mono-
layer  MoX2,  before  and  after  crystal  structure  transition  from
the 2H- to 1T-phases. Their results show that the phase trans-
ition from 2H-MoX2 to 1T-MoX2 may significantly increase Ra-
man signals. Specifically, the immersion of four types of mono-
layer  substrates  in  a  10–5 M  R6G  solution  results  in  EF  values
in the following order: 1T MoSe2 > 1T MoS2 > 1H MoSe2 > 1H
MoS2, as shown in Fig. 3(c). This difference may arise from the
highly  efficient  charge  transfer  from  the  Fermi  level  of  1T
MoX2 to nearby molecules. Furthermore, to further improve Ra-
man scattering, on-chip optical structures of light-field-promot-
ing intensities have been integrated with TMD substrates. For
instance,  Tao et  al.[58] demonstrated  CVD-grown  large-scale
1T′-W(Mo)Te2 atomic  layers,  which  exhibited  prominent  Ra-
man enhancement, with EFs of  ( ), and an lim-

it  of  detection  (LOD)  value  as  low  as  40(400)  ×  10–12 M.  The
team then showed that the detection sensitivities of R6G mo-
lecules  could  be  further  improved  by  integrating  2D  materi-
als  on  a  silicon  chip  with  a  distributed  Bragg  reflector  (DBR),
as  shown in Fig.  3(d).  They demonstrated that  the DBR could
be used as a light-field amplifier to promote the light-field loc-
alization  of  WTe2,  thereby  improving  the  detection  sensitivit-
ies of R6G molecules up to the femtomolar level.

3.2.  SERS based on h-BN

h-BN, sp2-hybridized 2D insulator is a structural analog of
graphene,  with  sublattices  being  occupied  by  equal  num-
bers  of  boron  and  nitrogen  atoms,  arranged  alternately  in  a
honeycomb  configuration[59].  Due  to  their  atomic  thin  sur-
faces,  which  are  free  of  dangling  bonds,  and  exhibit  negli-
gible  defects,  as  well  as  only  a  small  lattice  constant  mis-
match  (~17%)[60] with  graphene,  h-BN,  also  known  as  “white
graphene”,  has  been  studied  as  an  ideal  platform  for  use  in
photodetectors[61], energy harvest devices[62], electronic pack-
aging[63],  and  biomedicines[64].  Compared  with  nonpolar  and
conductive  2D  materials,  e.g.,  graphene,  h-BN  is  highly  polar,
as  well  as  insulating,  due  to  its  large  bandgap  of  5.9  eV[65].
Moreover, it has a polar surface with high resistance to oxida-
tion[66, 67].

Based on these unique properties, h-BN may be a good al-
ternative  to  graphene  for  the  purpose  of  Raman  enhance-
ment.  It  has  been  proposed  that  the  Raman  enhancement
mechanism for h-BN may stem from different factors. In 2014,
Ling et  al.[68] comprehensively  compared  and  studied  differ-
ent  SERS  chips  consisting  of  graphene,  h-BN,  and  MoS2,  re-
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Fig. 4. (Color online) SERS studies based on h-BN, BP, and MXenes. (a) Preparation of SERS chips based on graphene, h-BN, and MoS2. The layered
2D  materials  are  shown  in  gray,  while  probe  molecules  are  shown  in  red.  (b)  Raman  spectra  of  CuPc  molecules  on  SiO2/Si  (black  line),  MoS2

(green line), h-BN (red line), and graphene (blue line) substrates. (c) Raman spectra of RhB molecules (~10–8 M) on a BP substrate, showing differ-
ent Raman peaks, which could be attributed to different vibrational transitions in the RhB molecules. (d) Schematic of Ti2NTx, etched and delamin-
ated from Ti2AlN, and employed as a SERS substrate. (a) and (b) are reprinted with permission from Ref. [68]. © 2019 Wiley‐VCH Verlag GmbH &
Co. KGaA, Weinheim. (c) is reprinted with permission from Ref. [80]. Copyright © 2019 the Royal Society of Chemistry. (d) is reprinted with permis-
sion from Ref. [92]. Copyright © 2017 American Chemical Society.
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spectively,  as  shown  in Fig.  4(a).  The  enhancement  factors  of
graphene-based  and  h-BN-based  SERS  chips  are  strong,  as
shown  in Fig.  4(b).  In  contrast  to  the  strong  charge  transfer
between  graphene  and  CuPc,  the  dipole-dipole  interaction
between h-BN and CuPc can cause local symmetry-related per-
turbation to increase LUMO-HOMO transitions, inducing an in-
crease in the probability of electron transition[68]. The high en-
hancement factors of CuPc on the h-BN SERS chips inspired re-
searchers  to  explore  their  possible  application  in  the  field  of
biological  sensing.  For  example,  Liu et  al. [69] created  a  novel
theragnostic  platform,  in  which  CuPc,  hairpin  quadruplex
(HG)  DNA,  and  h-BN  were  integrated  for  the  purpose  of  real-
time  imaging  and  in-situ  monitoring  of  miR-21.  In  this  way,
CuPc was used as a diagnostic sounder for miR-21,  while HG-
DNA was used to further enhance detection sensitivity.

3.3.  SERS based on BP

Of  all  the  2D  materials,  BP  demonstrates  a  series  of
unique characteristics  for  use in Raman enhancement.  Firstly,
BP,  as  a  2D layered material  with anisotropy,  can provide de-
tailed  information  about  the  charge-transfer  process  as  com-
pared  to  the  use  of  isotropic  materials[70].  Secondly,  the
bandgap  of  BP  is  dependent  on  its  thickness,  which  is  tun-
able from about 0.3 eV (bulk) to 2.0 eV (monolayer), making it
suitable  for  developing  SERS  substrates  that  can  be  specific-
ally tailored[71]. Finally, as the first-layer effect plays an import-
ant  role  in  CMs[72],  BP  possesses  a  much  higher  surface-to-
volume  ratio  than  that  found  in  other  2D  materials,  e.g.,
graphene  and  TMDs,  due  to  its  puckered  lattice  configura-
tion[73, 74],  maximizing the adsorbing effect  of  molecules on a
chip.

To  explore  the  intrinsic  SERS  performance  of  BP[75, 76],  a
process  flow  of  controlled  nano-structuring  has  been  estab-
lished.  Several  approaches  have  been  studied  in  relation  to
the  nano-patterning  and  thinning  of  BP  flakes,  such  as
plasma  oxidation[77],  thermal  sublimation[78],  and  laser  oxida-
tion  processes[79].  For  example,  Kundu et  al. [80] used  a  low-
power  laser,  at  a  wavelength  of  532  nm,  to  irradiate  few-lay-
er  BP flakes.  They demonstrated that few-layer BP flakes with
a  thickness  of  ~200  nm  can  be  uniformly  thinned  down  to
2–3  layers,  with  a  thickness  of  ~  4  nm,  by  controlling  both
laser  power  and  exposure  time.  This  promising  result  may
prove  useful  in  the  development  of  metal-free  SERS  chips
with an EF of ~106, and an LOD of ~10–8 M, for RhB detection,
as  shown  in Fig.  4(c).  Moreover,  due  to  its  in-plane  low  sym-
metry  and  anisotropic  charge  carrier  mobility[81−83],  BP  is  an
ideal  material  with  which  to  investigate  how  the  electronic
properties  of  a  substrate  can  affect  its  chemical  enhance-
ment. Based on a few-layer BP flake on a chip, Lin et al.[84] util-
ized  CuPc  molecules  as  a  Raman  probe,  and  observed  a
unique angle-dependent SERS enhancement, which was attrib-
uted to the excellent mobility of charge carriers along its arm-
chair  direction,  regardless  of  the molecular  orientation of  the
CuPc.

3.4.  SERS based on MXenes

MXenes  share  a  general  formula  of  Mn+1XnTx (n =  1–3),
where  M  is  an  early  transition  metal,  X  is  a  carbon  or  nitro-
gen, and T is the surface termination (O, OH, F, or Cl)[85].  They
exhibit  unique optoelectronic properties,  such as high metal-
lic  conductivity  and  hydrophilicity[86],  which  are  suitable  for
the development of SERS chips[87−89].

. × 

. ×  . × 

For  their  proof-of-the-concept,  Ye et  al.[90] reported  the
large-scale  synthesis  of  highly  crystalline  monolayer  Ti3C2

nanosheets  via  an  effective  chemical  exfoliation  method.
These  ultrathin  Ti3C2 nanosheets  can  be  assembled  into  flex-
ible  SERS  chips  with  an  LOD  of  10–11 M,  and  an  EF  of  up  to

. The ultrasensitive SERS capabilities of Ti3C2 monolay-
ers  arise  from the dual  functions  of  strong localized-SPR,  and
remarkable  interfacial  charge-transfer.  In  addition,  the
wavelengths  of  excitation  lasers  play  an  important  role  in
SERS  performance[88].  In  2017,  Sarycheva et  al.[91] demon-
strated  a  method  of  producing  Ti3C2Tx SERS  chips  with
design-inherent hot-spots and CMs-enabling electronic struc-
tures  with  an  EF  of  105–106,  together  with  chemical  selectiv-
ity in order to dye molecules. By calculating the SERS enhance-
ment  of  R6G,  it  can  be  demonstrated  that  the  EFs  are
~  and ,  for  the  488-nm-wavelength  and  514-
nm-wavelength  lasing  excitations,  respectively.  Moreover,  in
comparison with the widely-studied carbon-based Mxenes, ni-
tride-based Mxenes may possess high electronic conductivity,
which  could  contribute  to  the  enhancement  of  CMs.  For  ex-
ample, Soundiraraju et al.[92] reported the synthesis of Ti2N by
means  of  the  selective  etching  of  Al  from  a  Ti2AlN  precursor,
using  a  mixture  of  potassium  fluoride  and  hydrochloric  acid,
as  shown  in Fig.  4(d).  The  Raman  signal  enhancement  in  the
presence  of  Ti2NTx MXene  could  be  attributed  to  the  high
electron-density distribution on the N atom, as a result of the
transfer of electrons from Ti atoms.

3.5.  SERS based on 2D-material heterostructures

Recently,  2D  van  der  Waals  (vdW)  heterostructures,
which are assembled by stacking different  2D crystals  on top
of  one another,  have  been shown to  provide  promising plat-
forms for  developing SERS chips,  since  they can take advant-
age  of  the  merits  of  various  SERS  materials.  For  instance,
GERS depends on the ground-state charge transfer at the inter-
face,  while  the  enhancement  of  the  Raman  scattering  is  sub-
ject  to  the  DOS  of  graphene[93, 94].  On  the  other  hand,  TMDs
have a more complex band structure, and abundant electron-
ic  states,  yet  the  intensity  of  the  Raman  scattering  is  weak
due to a combination of ground-state charge transfer and di-
pole-dipole  coupling[68].  2D  vdW  heterostructures  of  grap-
hene and TMDs could combine the ground-state charge trans-
fer  of  graphene  with  the  abundant  electronic  states  of  TMDs
to enhance Raman signals. In addition, layered 2D-material het-
erostructures facilitate interlayer electronic tunneling to artifi-
cially  build  electronic  band  structures[95].  As  CMs  rely  heavily
on  the  electronic  structures  of  materials,  the  electronic  band
structures of  heterostructures with an artificially  designed se-
quence  could  be  anticipated  to  significantly  enhance  EFs[16].
Moreover,  the  weak  vdW  interface  could  lead  to  an  en-
hanced electric dipole moment and dipole-dipole interaction,
facilitate  effective  charge  transfer  across  the  vdW  interfa-
ces[72, 73],  and  therefore  contribute  to  an  overall  improve-
ment in SERS.

Owing to the merits of  2D heterostructures,  many efforts
have  been  made  to  develop  2D  heterostructures  for  study-
ing  SERS[96, 97].  In  2017,  Tan et  al.[16] demonstrated  a  hetero-
structure based on graphene (G) and WSe2 (W) monolayers as
an  efficient  platform  for  SERS.  The  interlayer  distance  of  the
heterostructure  was  decreased  from  ~4  to  0.4  nm  to  achieve
an  optimized  combination  of  graphene  and  WSe2.  By  chan-
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ging  the  number  and  sequence  of  the  stacked  layers,  i.e.,
G/W, G/W/G/W, and W/G/G/W, it was demonstrated that the in-
fluence of the stacking method on SERS performance primar-
ily  depends  on  the  2D  material  on  the  top,  as  shown  in
Fig.  5(a),  indicating  that  Raman  enhancement  due  to  hete-
rostructures  is  a  surface  effect.  Heterostructures  with  more
than  two  layers  have  a  little  impact  on  the  enhancement
of charge transfer, resulting in a similar performance, in terms
of  enhancement,  with  bilayer  heterostructures,  as  shown  in
Fig. 5(b). Moreover, heterostructures could integrate the mer-
its  of  two  or  more  types  of  material  exhibiting  EM-compar-
able sensitives when utilized in SERS chips[98, 99].  For example,
Qiu et  al.[100] developed  a  highly  effective  SERS  chip,  based
on  graphene-microflowers  (GMFs)/2H-MoS2,  with  a  LOD  of
only  M,  and  an  EF  of .  This  enhancement
arises  from  the  synergistic  effects  of  the  substantial  pre-con-
centration  of  probe  molecules,  enhanced  charge-transfer,
and  multiple  light  scattering.  Compared  with  pristine
graphene, the GMFs/2H-MoS2 heterostructure offers an abund-
ance  of  S  vacancies,  serving  as  an  intermediate  level  to  pro-
mote  charge-transfer  between  probe  molecules  and  sub-
strate,  further  enhancing  SERS  signals.  Moreover,  as  the  oxy-
gen concentration in TMDs may tune the electronic structure
and the oxygen atoms may induce a dipole moment on their
surface, thereby increasing Raman enhancement effects[19], TM-
Ds-based  heterostructures  have  been  proven  to  enhance  Ra-
man  signals  in  the  same  way.  In  2020,  Seo et  al.[101] synthes-
ized uniform large-area ReOxSy via solution-phase deposition,
and  demonstrated  an  ultrasensitive  SERS  platform,  based  on

. × 

μex
μPICT

a graphene/ReOxSy vertical heterostructure, with a femtomol-
ar  LOD.  The  electronic  structure  of  ReOxSy can  be  modulated
by  changing  the  oxygen  concentration  in  the  lattice  struc-
ture,  offering  effective  complementary  resonance  effects
between  ReOxSy and  R6G.  In  addition,  since  oxygen  atoms
have  higher  electronegativity  (3.44)  than  sulfur  atoms  (2.58),
their  presence in the ReS2 lattice generates a  dipole moment
on the  chip  surface,  resulting in  strong dipole-dipole  interac-
tion between the ReOxSy and R6G molecules.  Based on these
two properties, ReOxSy was integrated with graphene to form
a  heterostructure  via  vdW  interaction,  producing  an  efficient
Raman  enhancement  effect,  as  shown  in Fig.  5(c).  Further-
more,  inspired  by  the  development  of  semiconductor  SERS
chips[102, 103],  researchers  have  recently  devoted  a  great  deal
of  attention  to  combining  semiconducting-phase  2D  materi-
als,  i.e.,  MoS2 and  WTe2,  with  metal  oxides  to  form  semicon-
ductor-heterojunctions, with the aim of further enhancing Ra-
man  scattering.  For  example,  using  W18O49 and  monolayer
MoS2,  Li et  al.[104] demonstrated  that  a  vertical  semiconduct-
or-based  heterojunction  can  not  only  increase  the  EF  by  a
factor of ,  but can also endow SERS chips with a low
LOD of below 10–9 M. This dramatically enhanced Raman scat-
tering  can  be  attributed  to  the  enhancement  of  PICT  pro-
cesses, as shown in Fig. 5(d). In R6G-W18O49/MoS2 ternary sys-
tems, on the one hand, exciton resonance ( ) in the monolay-
er  (MoS2)  enhances  the  PICT  resonance  ( ),  which  in-
creases  the  Raman  scattering  cross-section.  On  the  other
hand,  as  the  electrons  on  the  conduction  band  (CB)  of  MoS2

can  easily  transfer  to  the  CB  of  W18O49,  more  electrons  reach
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Fig. 5. (Color online) SERS studies based on 2D heterostructures. (a) Schematic of Raman measurement of CuPc molecular coating on G/W/G/W
chips. (b) Raman spectra of CuPc molecular coating on G/W/G/W and G/W chips, respectively. (c) Schematic of Raman enhancement mechanism
of graphene/ReOxSy-MT chips. (d) Energy level diagrams and charge transfer in the R6G-W18O49/MoS2 complex. (a) and (b) are reprinted with per-
mission from Ref. [16]. Copyright © 2017 American Chemical Society. (c) is reprinted with permission from Ref. [98]. Copyright © 2020 American
Chemical Society. (d) is reprinted with permission from Ref. [104]. Copyright © 2019 American Chemical Society.
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the CB of W18O49, which resulting in a larger number of permit-
ted  energy  states  for  PICT,  thereby  improving  charge  trans-
ition  probabilities.  These  two  factors  operate  in  conjunction
to improve SERS performance.

4.  Conclusion and perspective

In  this  paper,  we  have  reviewed  the  recent  advances  in
SERS  chips  based  on  2D  materials  for  chemical  and  biologic-
al  sensing.  Since  many  excellent  review  papers  of  GERS  have
been published in the past few years[17, 93, 105−112], here, we fo-
cused  primarily  on  state-of-the-art  SERS  experimental  results
based  on  other  2D  materials,  i.e.,  TMDs,  h-BN,  BP,  MXenes,
and  their  heterostructures,  as  shown  in Table  1.  Over  50  pa-
pers  published  in  this  area  have  been  systematically  sum-
marized  and  categorized.  Specifically,  we  have  discussed
the  structures,  physicochemical  properties,  SERS  enhance-
ment capability, Raman enhancement mechanisms, and sens-
ing  applications  of  these  substrates.  We  hope  that  this  snap-
shot  of  the  status  of  2D-material-based  SERS  chips  could
arouse more interest in this emerging area.

Compared with SERS based on metallic materials, 2D-ma-
terial-based  SERS  chips  are  still  in  development.  Firstly,  in
terms of mechanisms, Raman enhancement of 2D-material sub-
strates  mainly  originates  from  CMs,  specifically  charge  trans-
fer  resonance  and  dipole−dipole  interaction,  which  varies
based on different  substrate  materials  and analytes.  With the
discovery of emerging low-dimensional materials, such as Mn-
PS3–xSex

[113], and transition metal oxides[114], a wealth of physic-
al and chemical processes in SERS remain to be explored. Com-
pared  with  the  EMs,  these  are  not  yet  well-understood.
Secondly,  due  to  the  atomic-layer  thickness  of  2D  materials,
their  physicochemical  properties  could  be  tunable  by  virtue
of  applying  an  external  electric-field,  tailoring  morphologies,
or constructing heterostructures consisting of multiple materi-
als (e.g., low-dimensional materials, dielectrics, or metallic ma-
terials),  representing  a  significant  opportunity  to  engineer
Raman  enhancement  capability.  This  unique  feature  may
greatly  expand  the  application  scope  of  the  sample  analysis
based on CMs,  since  chemical  enhancements  are  usually  sys-
tem-dependent.  As a result,  this is  a promising field,  meriting
in-depth  study.  Thirdly,  it  would  be  interesting  to  integrate
2D  materials  with  microfluidic  channels[115, 116] or  photonic
structures[117, 118] to improve light-matter  interactions,  as  well
as  to  explore  lab-on-a-chip  applications.  Finally,  the  study  of
biosensing  applications  based  on  2D-material-based  SERS
chips  is  in  its  infancy.  Compared  with  metallic  materials,  2D
materials  offer  potential  low-cost  production,  easy  synthesis,
excellent  biocompatibility,  and  outstanding  reproducibility
for SERS chips, with great potential for use in a variety of chem-
ical  and  biological  sensing  applications,  including  analytical
chemistry,  environmental  science,  pharmaceutical  science,
food  science,  forensic  science,  and  pathology.  Consequently,
we  believe  tremendous  opportunities  exist  with  respect  to
2D-material-based  SERS  chips,  which  are  expected  to  be-
come the next-generation SERS techniques.
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